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1. INTRODUCTION

Some years ago R. Penrose discovered a fascinating class of non-periodic
tilings of the plane. We refer to Penrose’s own papers [3, 4], but also to M.
Gardner's beautiful survey [2]. In particular that survey shows the important
contributions of J.H. Conway to the subject. Gardner’s article concentrates in
particular on the tilings with just two different pieces, the “kite’ and the
l : “'dart™ (see figure 5 below). ;

] Some of the properties of these tilings are reminiscent of the quasi-periodic
behavior of | (n+ 1)a] - | ne] for a fixed irrational & (Lx] is the integral part
of x), where arbitrary long subsequences are repeated infinitely often.
Therefore we feel the need for an algebraic approach, and that is what will be
presented in this paper. Actually it is shown that the shape of a Penrose kite-

| i and-dart pattern is determined completely by a complex number &, and that

properties of the pattern can be derived from properties of & There are
exceptional cases (which we shall call singular), where & produces more than
one pattern; the number of patterns corresponding to a singular £ can be 2 or

| 10. : c

| As the basis of our algebraic description we shall take the pentagrids. A

pentagrid is a figure in the plane, obtained by superposition of 5 ordinary grids,

obtained from each other by rotation over angles of multiples of 2a/5

(combined with certain shifts). Here we used the term “*ordinary grid"" for the
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set of points whose distance to a fixed line is an integral multiple of a fixed
positive number.
We now explain in general terms how the various pieces of our discussion fit
together. ;
(i) There is a one-to-one correspondence between the kite-and-dart patterns and
certain rhombus patterns. This correspondence is due to Penrose (see [2]). We
shall describe the rhombuses as being provided with red or green arrows along
the sides, and we shall speak of arrowed rhombus patterns (abbreviated AR-
patterns. These arrowed rhombus patterns are somewhat easier for algebraic
description than the kite-and-dart patterns. .
(ii) A pentragrid is described by five reals yo, ..., ¥4 (representing the shifts in 5
directions). The restriction is made that yo+ ---+ y4=0. A pentagrid is called
singular if there is a point in the plane where three or more grid lines intersect,
otherwise regular.
(iii) A regular pentagrid determines an AR-pattern. Singular pentagrids can be
obtained as limits of regular pentagrids, but depending on the way we approach
*the limit we get different AR-patterns (sometimes 2, sometimes 10 different
patterns). i .
(iv) All AR-patterns (and-therefore all kite-and-dart patterns) can be obtained
as under (iii). For the proof of this we use the deflations and inflations that
Penrose defined for his patterns; the corresponding operations on pentagrids
are very simple. R '
(v) The five real pentagrid parameters yo,...,y« define a single complex
parameter £. Two pentagrids with the same { are just obtained from each other
by a shift. A pentagrid produces more than one AR-pattern (it depends on how
the grid lines are numbered), but if §;— 2 has the form no+m{+mli+m+
+ il ({=exp(2ri/5), no,...,m€Z, Mo+ +na= 0) then the AR-patterns
corresponding to &; and &z are obtained from each other by shifts. Symmetries
of the patterns can be described in terms of properties of £, and therefore it is
possible to get a complete survey of all kite-and-dart patterns with symmetry.
(vi) There are some other geometrical ways to look at the pentagrid-produced
AR-patterns. One of them is to intersect the regular five-dimensional cubic
lattice by certain two-dimensional planes, and looking at the cubes which have
points in common with the plane. Projecting the centres of those cubes onto
that plane we get the vertices of the rhombus pattern.

A second geometrical approach is somewhat harder to describe in a short
survey like this section; we refer to Section 8. It has the charming feature that
the type of a vertex in the AR-pattern is made visible at once by means of the
position of a corresponding point in one of four pentagon figures.

(vii) In a previous paper [1] we presented a paradigm in the world of zero-one
sequences. These sequences were defined by having infinitely many
predecessors in the Sense of a certain deflation operation. The properties of
these sequences as to repetition of finite subsequences are strongly analogous to
properties of the Penrose patterns. A very simple algebraic description could be
given for the zero-one sequences. In several senses this paradigm suggested the
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attack on the algebraic description of the Penrose patterns. And aﬁua]]r these
zero-one sequences appear in the flesh in the singular Penrose patterns (instead
of zeros and ones we get short and long bow ties!).

NOTATION. The letters C, B, Z have the usual meaning of complex plane, real
line, set of integers, respectively.

The letter j always represents an element of the set {0, 1,2,3,4}. Addition is
done mod 5 in this set. “*For all j** will mean **for j=0,...,4"; L; stands for
et

We always put
“_1] c_Em.f'S‘ F=I+c+‘:-l_}+}ﬁ

whence {+ (" '=p~!, 2+ {"=—p. ;
If xe R, then | x] (the “floor” of x) is the integral part of x, and [x] (the
“roof** of x) is the least ne Z with n=x.
_Z[{] denotes the ring of all T n;{/ with o, ..., na € Z. And P denotes the set of
all no+m{+ - +mdl with_no,...,u€ Z, Lnj=0 (P is the principal ideal
generated by 1 -{). '

2. AR-PATTERNS

As building blocks we take two rhombuses. In both all sides have length
equal to 1; the rhick rhombus has angles 72° and 108°, the thin rhombus has
angles 36° and 144°, We provide the sides with red and green arrows as depicted
in figure 1. For the sake of printing in black we indicate the color difference by
drawing the red arrows as single arrows, the greens as double arrows. The color
scheme of a rhombus is entirely determined by indicating the corner where
greén arrows meet (the dot is in an angle of 72° or 144°).

Fig. 1., The thick and the thin rhembus.

The condition for joining the pieces together is simply that arrows have to
match: adjacent pieces must have arrows of the same color and the same
direction on the common edge. If the whole plane is tiled this way, we call it an
AR-pattern (AR stands for arrowed rhombus). A piece of such a pattern is
given in figure 2. The picture with colored arrows can of course be replaced by a
picture with dots in corners (see figure 3), but it is harder to express the
conditions for joining the pieces together in terms of these dots.
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Fig. 3. AR-pattern with dots indicating the vertices towards which the Ereen arrows point,

From an AR-pattern we get a kite-and-dart pattern as indicated in figure 4
(where all angles are multiples of 36°). The thick rhombus becomes a dart plus
two half kites, the thin rhombus becomes two half kites. The heavy lines
become the sides in the kite-and-dart pattern. The points A are the points where
a corner of the rhombus was dotted. The kite and the dart are drawn in figure 5.
Here the letters A and B refer to the rule for joining pieces: sides AB have to be
pasted to sides AB. '

Getting back from the kite-and-dart pattern to the AR-pattern is slightly
more complicated: (i) draw colored arrows as in figure 6. (ii) draw an extra
green arrow from a “‘sun’’ to a *“‘queen’” whenever such points are connected in
the kite-and-dart pattern (for these terms we refer to 2D.

We shall not digress on the kites and darts, for everything we shall do will be
in terms of arrowed rhombuses.

3. SKELETONS OF PARALLELOGRAM TILINGS

This section has mainly the purpose of a heuristic preparation for Section 5.
If we have somehow tiled the plane by means of parallelograms, such that every
two adjacent parallelograms have a full edge in common, we can characterize
that tiling completely by what we shall call a skeleron.

Consider an edge of any parallelogram in the tiling. Then the tiling contains a
strip (infinite in both directions) of pairwise adjacent parallelograms each one
of them having two edges equal to and parallel to the edge we started from.
Orienting that edge arbitrarily, we get a vector that plays the same réle for all

A

A

Fig. 4. From rhombuses to kites and darts.
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Fig. 5. The kite and the dart.

parallelograms of the strip. We connect the midpoints of the parallel edges, and
thu:wcg:tacunuthu:urlilﬂid:th::tﬁp.\lfemdnﬂtisfnremedpin
*the pattern. The edge determines a strip, and to the strip we attachacurve: .a
vector. . ) i
Next we erase all parallelograms, just keeping the curves plus the vectors that
belong to them. Now we distort the plane with the curves topologically, without
d‘muﬂin:mcmmmmﬂuuthgmulﬁn;muctmnfmmplum:
:tdctﬂh.Thefmhthﬂmthehui:uﬂheskdewnw:mniﬂhuﬂd up. the
oﬁsinaipanuelosﬂmplum{ap:nfmmnshiﬂ}.Cunupmdinsmthﬁnm
mﬁmufmmmﬁuﬂduwﬁnlmphm]npanﬂdoﬂmd:ﬂndbr
the vectors belonging to these curves. Having done this for all intersection
points we note that the parallelograms nicely fit together, and form the original
pattern.

Wecansuprmrfa:{uchmsin;thukehtmwrselm. not starting from a
given parallelogram tiling, although it is not easy to formulate necessary and
sufficient conditions exactly. The first thing to require is that if two curves
intersect then their vectors should not have the same direction. And no point
should lie on more than two curves. Next we have to impose restrictions that
prevent overlapping of paralellograms. To that end we require that the curves
can be oriented such that at each intersection point the curve intersectio s im
agreement with the figure formed by the corresponding vectors. This agresment
is a matter of sign only. If the oriented curves are ¢, and ¢y, the vectors viand vz,
and if ¢; crosses ¢ from its right bank to its left bank, then we have to require
that the shortest rotation of the unit vector vi/|vi| to v2/]vy| is clockwise.

N

Fig. 6. From kites and darts to rhombuses.




A further condition is that on each curve the set of intersection points with
other curves has the order structure of Z.

The above conditions do not yet guarantee that the parallelograms will tile
more than just a part of the plane. We shall not try to formulate further
conditions: we have said enough to satisfy our heuristic purposes.

We note the duality between the skeleton and the parallelogram pattern. An
intersection point in the skeleton corresponds to a parallelogram, and a mesh in
the skeleton plane corresponds to a vertex of a parallelogram. (We use the term
mesh for the connected components of what is left when we remove the skeleton
from the plane.)

The skeletons of our AR-patterns will turn out to be pentagrids.

4, PENTAGRIDS
Let yg, ..., ¥4 be real numbers, satisfying

(4.1) Yo+ -+ ya=0. . ) :
(This condition will not play a rdle until Section 5.) In the complex plane C we
consider 5 grids. For j=0,1,...,4, the j-th grid is the set

4.2) {zeC|Re(z{~/)+yel}

(where Z is the set of all integers). The pentagrid determined by Yo, ..., ¥4 is the
union of (4.2) for j=0,...,4. .

The pentagrid is called regular if no point of C belongs to mofe than two of
the five grids, and otherwise singular.

Given ¥s, ..., ¥4 (with (4.1)), we associate with every point zeC five integers-

Ka(z), -+, Ka(z) where
4.3)  Ki(2)=[Re(z{~)+w]

(for notation see Section 1). P
Let r and 5 be integers with 0=r=<5=<4, and let ke Z, ks;e Z. Then the point
zo determined by the equations

(4.4) Re(™N+v=k, Re@{~)+n=k

is the intersection point of a line of the r-th grid and a line of the s-th grid. Ina
small neighborhood of zo the vector (Ko(z),...,Ks(z)) takes four different
values, the four vectors we get from the formula '

4.5)  (Kolzo) ..., Ka(z0)) + €1(on, ..., dar) + £2(D0s, .- ,Oag)

by taking (e1,£2)=(0,0), (0, 1), (1, 0), (1, 1), respectively. (dy is Kronecker's
symbol: 1 if i=j and 0 otherwise).

5. RHOMBUS PATTERNS ASSOCIATED WITH REGULAR PENTAGRIDS
We assign to any vector (k, ..., k4) € Z* the complex number

(5.1 kot kil + ki + kP + kal
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Note that the four points represented by (4.5) (with £y and ¢z taken from the set
{0,1}) form the vertices of a rhombus.

Assuming the pentagrid (given by yo, ..., y4) to be regular, we can attach such
a rhombus to every intersection point of the pentagrid. We will show in a
moment that they form a tiling of the plane by thick and thin rhombuses. The
set of vertices of the rhombuses can also be described as the set of all points

f(z), with
(5.2) fla)= LK@

(cf. (4.3)) where z runs through C. Note that (5.2) is constant in every mesh of
the pentagrid.

We now sketch a proof for the statement that the rhombuses form a tiling of
the plane. To every mesh of the pentagrid there belongs a point f(z), and the
four meshes surrounding a point of intersection of two grid lines form the
vertices of a rhombus. Locally, these thombuses do not overlap. In order to
show that every point w of the plane is covered by a rhombus, we note that if z
™ runs clockwise through the circumference of a large circle, then f(z) describes a
closed curve that rums clockwise around w. We just have to note that
Mz)—4zis bounded, because it follows from (4.3) that we have

fR)=3z+ Tily+ 4@,

where

(5.3) Ai(@)=Ki(x)—Re@z{™)-y. 0s4i(2)<l.

We shall next prove that the rhombus pattern can be provided with colored
arrows in such a way that it becomes an AR-pattern.

First we define the index of a vertex in the rhombus pattern. For every zeC
we have at most two of 1g(z),...,A4(z) equal to zero, and hence 0<Jlo(z)+
4+ +=++ la{z) < 5. By (4.1) and (5.3) we infer

(5.4 LiKi(2)= L2

and since the left-hand side is an integer, we infer that it has one of the values 1,
2, 3, 4. So every vertex in the rhombus pattern can be represented as
ko+ kil + -+ kol * with ko+ --- + ke {1,2,3,4}. This value ko+--- + kqis called
the index of that vertex. (Needless to say since I+{+:--+{*=0, the sum
ko+ -+ + ks can always be reduced modulo 5, but the fact that the sum is never a
multiple of § is remarkable.)

If we move a point along the edges of the rhombuses, we note that the index
increases by 1 in the directions 1, {, {2, (% (% and decreases by 1 in the
directions —1, =, —={3, =3, =% It follows that a thick rhombus has either
index values 1 and 3 at'the 72° angles and value 2 at the 180° angles, or it has 2
and 4 at the 72° angles and 3 at the 108° angles. For a thin rhombus we get
either 1 and 3 at the 144° angles and 2 at the 36° angles, or 2 and 4 at the 144°
and 3 at the 36° angles.

We now decide how to color the edges: edges connecting a point of index 1 to
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a point of index 2 are colored red, edges connectinga ltoa2ora3toadare
colored green. We also decide on the direction of the green arrows: they point
from 2 to 1 or from 3 to 4.

It remains to orient the red edges. For every separate rhombus the orientation
follows from the colors, but the question is whether adjacent rhombuses give
the same orientation to their common side if that common side is red. It is not
as simple as with the green edges where the index values determine the
orientation. The orientability of the red edges will be trivial once we have
proved the following. Let PQ be a red edge. The two rhombuses that have the
edge PQ in common, have angles @ and f at P, respectively. Then a and f are
either both<n/2 or both>n/2. ' :

This statement on a and £ can be translated in terms of the pentagrid. We
formulate it for a line / of the 0-th grid (for the other grids it is obtained by
cyclic permutation). Consider two consecutive intersection points A and B on
such a line, where A is obtained by intersection with a line of the p-th grid, and
B by intersection with a line of the g-th grid. Here p and garein {1,2,3,4}. (Itis
not assumed a priori that p# g). The statement corresponding to the above one
on @ and f becomes: If the segment AB is red, then p+q is odd. (Since edges of
the skeleton correspond to edges of the rhombuses, we say that AB is red if
TiKi(z) is 2 on one side of AB and 3 on the other side).

By means of a simple transformation we reduce the problem to the case that
yo=0 and that [ is the imaginary axis. For y€ R we have

Ki(iy)=[ysin@rn/S)+m]. Kaliy)=[-ysin(2n/5)+yd],
Kiiy)=[ysin(dn/5)+y2]. Ks(y)= [—ysin(4n/5)+y3].

Since the pentagrid is assumed to be regular, we note that yy+ys and y2+¥3
are not integers.

If y runs from —os to oo, we find that K;(iy) + Ka(iy) — [ 1+ y4] jumps from -

0 to 1 at points where ([ya+ y1] — y1)/sin(2n/5) is integral, and from 1 to 0at
points where ya/sin(2n/5) is integral. We get a similar statement if we replace
K1, Ke, 71, 74, sin(2n/5) by K2, K3, 2. ¥3, sin(4n/5).

Since the points of intersection with the 1* and 4" grid alternate, and the
same thing holds for 2™ and 3 grid, we note that p# g. Now assume that p+¢
is even. We infer that either {p,q}={1,3} or {p.q} ={2Z4}. Since yo=0 we
have 14 -+ pa=0 (cf. (4.1)), whence [yi+y4] + [r2+pal=1. It is easy to
check now that Ki(iy) + Kz(iy) + K3(iy) + Ka(iy) =1 or 3 between the points A
and B. So either Ko(iy) +--- + Ks(iy) =1 on the left side and 2 on the right side,
or 3 on the left and 4 on the right. That means that the segment AB is green, and
we have finished our proof. That is, we have proved

THEOREM 5.1. The rhombuses constructed from the intersection points of a
regular pentagrid (given by yo,...,ys) by means of (4.5) can be colored and
oriented so as to form an AR-pattern (and therefore lead to a kite-and-dart
pattern).
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REMARK. Two real vectors yo,...,»4 and yg, ..., ¥ determine the same penta-
grid if and only if y;—y/eZ for all j. The AR-pattern generated by y* is
obtained from the one generated by y by means of a shift, where every complex
number a is taken into a+ 8, with a fixed 8. This @ belongs to P (the ideal
defined in Section 1).

6. TYPES AND INDICES OF VERTICES IN AN AR-PATTERN

In this section we discuss arbitrary AR-patterns; we do not assume them to be
generated by a pentagrid. The vertices in an AR-pattern can be of § different
types according to the figure formed by the colored arrows. It is easy to check
that the only possibilities (apart from rotation) are those of figure 7. These
types can also be derived from the types of points in a kite-and-dart pattern.
For kite-and-dart patterns the types have been christened star, king, queen, ace,

Jun, jack, deuce (see [2]). If we turn kite-and-dart patterns into AR-patterns by
the operation described in Section 2, the star turns into what is called S in figure
7, the king into X, then queen into (, the jack into J and the deuce into D. The
aces vanish entirely, and the suns give rise to S3, S4 or 55, depending on
whether the sun is surrounded by 3, 4 or 5 darts.

By rotation we can arrange that all the arrows of the patterns have directions
taken from {1,{ {30304 -1, —C —{% =% —{*}. We shall now show that it is
possible to label the vertices with integers 1, 2, 3 or 4 such that the label
increases by 1 when we pass along an edge in a direction 1, {, {2, £°, {* (and
therefore it decreases h:,f 1 if we pass along an edge in a direction -1, ={, =2,
—={%, —{%. This means that the vertices are all of the form zo+ko+ kil +
+ ==+ kal*, where zois fixed, ko, ..., kse Z, 0<kg+ -+ + ka< 5. That is, we can
index the points in the same way as obtained in Section 5 for AR-patterns
generated by pentagrids.

This labelling is easily achieved and is depicted in figure 2. If a green arrow
runs in one of the directions 1, {, {2, {3, {4 we label the tail 3 and the head 4; in
the directions —1, =, ={2, ={?, —{* we label the tail 2 and the head 1. For the

3 k3
t v :. ‘TE ’ = -’
) ; 4
s K Q o
!‘__

)
‘o
. -
J S3 54 S5

Fig. 7. The vertex types.
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red arrows we use labels 2, 3 for the directions 1, {, { 1 r3 r4 andlabels3, 2 for
the others. It looks as though the labelling of a point depends on the arrow we
l consider it to be a head or tail of, but we can check that it is not. This is done by
looking at two arrows meeting at a vertex of a rhombus: then the rule for

attaching a label to that point by considering it as a head or tail of the first
arrow gives the same value as the rule applied to the second one.
| This labelling of the vertices of an AR-pattern led to R.M.A. Wieringa's
remark that an AR-pattern can be considered as the orthogonal projection of a
pattern in 3-space, consisting of only one kind of rhombus. We just take an
AR-pattern in a horizontal plane, and raise the points of index j vertically over
a distance of j/2. Thus we get rhombuses with side lengths all equal to V5,
short diagonals 2sin(n/5), long diagonals 2 sin(2n/5). They occur in two
‘positions: either the short diagonal or the long diagonal is horizontal. In the
first case the orthogonal projection on the horizontal plane is a thick rhombus,
and the horizontal short diagonal of the space rhombus is projected as the short
diagonal of the thick rhombus. In the second case the orthogonal projection is a
thin rhombus, and the horizontal long diagonal of the space rhombus is
projected as the long diagonal of the thin rhombus. In order to check the length
L of the other diagonals we need the relation 4 sin¥(2x/5) = 1 + 4 cos(n/5).

These three-dimensional patterns seem to be promising for construction of
ceilings in big rooms (rather than for floor tilings!). Let us call them Wieringa
roofs.

We mention that the angles of Wieringa’s rhombuses satisfy tana=+2.

7. A GEOMETRICAL INTERPRETATION OF AR-PATTERNS ARISING FROM

PENTAGRIDS

Let o, ..., 7s be reals with yo+---+p4=0. We assume that the pentagrid
defined by these y's (according to Section 4) is regular. The vertices of the
rhombus pattern associated to o, ..., 74 (Section 5) can bé described
geometrically as follows. Take a five dimensional space RS, and divide it into
unit cubes in the standard way (the vertices of the unit cubes are the points with (
integral coordinates). Each cube can be indexed with five int:-gcrs KOy oo o Kds )
such that the interior of the cube is the set of all points (xg . ,xq) with kp—1<
< x0< kg, +.., ka— | <x4<ka. Let us call that interior the ““open unit cube of the

L B TR TRy

T EEG

vector £, E
L ' Now consider the two-dimensional plane given by the :guatiuns E I

7.)  Lix=0, i

(0.2)  Eix-wRe{¥=0, -

(1.3)  Litg-y)Im{¥=0. - , i

THEOREM 7.1. The vertices of the AR-pattern produced by a regular pentagrid
(with parameters Yo, ..., ¥4) are the points ko+ ki{+--- + kal* where (ko, ..., k4)
runs through those elements of Z* whose open cube has a non-empty inter-
section with the plane given by (7.1)—(7.3). : (
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it We take any vector {ku..,‘,k..]EP and we ask whether there is a mesh in the

< We outline a proof for this theorem. Formulas (7.1)=(7.3) state that the
vector (Xo— Yo ..., Xa—y4) IS orthogonal to (L....1) (LAY and
N e g N X ) ¥ Consequently, (Xo—= Y0 --- X4~ ya) is a linear combination
of (1,5.¢%4¢% (%) and R Y  ¢-3,{~*), whence there is some zeC with
xXj—=¥i= R:{z{"fj U:-'G.--..4}. 1f {Xu.......‘n] lies in the cube of ko, ..., ks, we
obtain that kjcl'R:(z('f]-wﬂ, The same argument works the other way
around. MNote that regularity of the pentagrid guarantees that if k=
=[Re(z{~ )+ y;], then we have kj=Re(z{ ~/) + yj for at most two J's, s0 we can
manage to vary za little in order to get a point in the interior of the cube.

ti REMARK. If the points (ko, ..., Ka) m::_uioncd in Theorem 7.1 are projected
' orthogonally into the plane (7.1)=(7.3), we get a figure that can be turned, by
means of a similarity transformation, into the set of vertices of the AR-pattern,
This can be derived by evaluating the length of the projection of a real vector
((J- = (J1,.--2n) iNtO the plane given by (7.1)=(7.3), using the formula

ziEj.urje‘if+zi£}.mcﬁtl+tz,‘-.m}*=sz}.m’--

i If we project the points (ko, ... k) into the hyperplane given by (7.2)-(7.3)
' (instead of the plane (1.1)—(7.3)) we almost get the Wieringa roof. Here
“glmast" means that we still have to carry out an affine transformation,
reducing by a factor of 142 all distances perpendicular to the plane given by
(7.1)-(7.3)- The distances in the projection on (7.1)-(7.3) are proportional to
(L P+ HE yjP)t whereas for the Wieringa roof we would like to have

I 8. ALTERMNATIVE FORMULATIONS
| i Again we start with reals yo, .-+ ¥4 with zero sum, we assume that the y's are

such that the pentagrid is regular, and we build the AR-pattern as in Section 3.

pentagrid where Ko(z) = ko, ..., Ka(2) =ka (se€ (4.3)). The question is therefore
whether it is true that

\ @.1)  Feec V) (ki—1 <Re@ N+ 1<k

“Theorem 8.1 will rephrase (8.1) ina form that says thatl T k;{¥ lies in one of

four pentagrids Vi, ..., ¥4 according to L k;=1,...,4. These Vi, ..., Va are cross
sections of a set ¥ which we are defining as a subset of RX C:

8.2y V={(Z4 T4(¥)|0< o<, <<},

The points of ¥ with L4;=r form the pentagon-shaped region V. (To be more
precise, (nw)eV if and only if we V..) For us, the only important cases are
r=1 2,3, 4. In figure 8 we have depicted Vit is the interior of the pentagon
with vertices 1, & & C% ¢4, In figure 9 we have V;: it is the interior of the
pentagon with vertices 1+, C+{% o2+ 03, O+ 05 {*+ 1. Finally we have
simply Vi=—V1. V,=-V, for we note that LA (¥=- EFJ{H if g=1-4.
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Fig. 8. The pentagon V).

THEOREM 8.1. Condition (8.1) on ko, ..., ks is equivalent to

(8.3) (LkuLl-mX¥M)eV.

PROOF. From (8.1) we get to (8.3) if we put kj— Re(z{~/)—yj=4;.

Next start with (8.3). It says that s, ..., A+ exist such that 0<l<1,...,0<
<l<l, T(k-A—-¥)=0, E(ki—A—»)¥=0. The argument used in the
proof of Theorem 7.1 shows that z exists such that k;j— ;- yy=Re(z{ =4 for all
J. This proves (8.1).

Theorem 8.1 makes it easy to see whether a point ko + --- + ke{* is a vertex of
the AR-pattern. But we can also study the question which of the neighbors of
the point still satisfy (8.3) (the term “‘neighbors’’ is used for the points we get by
addition of +1, +{, +{2, £{% (¥ or, what is the same thing, increasing or
decreasing just one of the k; by 1. In this manner we can find the type (in the
sense of figure 7) of the vertex. Setting T (kj— ¥){¥ =6k, the result is as

1+§

%

Fig. 9. The pentagon ¥y,
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9. NEW PARAMETERS FOR PENTAGRIDS
" The vector (yo, ..., 74) with zero sum is determined by four real independent
variables (€.g. 71, ..., ¥4)- It will have some advantages to pass from these to two
complex parameters given by : : -

©.1) &=Liwmi¥% n=Limt

with the converse
(9.2) ?J=-}Rﬂ{C'”+#C")- i

The AR-pattern associated with yo, ..., 74 in the regular case depends on {
only. One way to see this is to put (7.2) and (7.3) in the form Lx{¥=¢,
another way is to write (8.3) as (L&), T k(¥ =& e V. A more direct way is to
evaluate Ko(z), ..., Ka(z) where 2 is solved from (4.4). In the evaluation of Ka(z)
we get determinants like

Yo ¥ Vs
63 ¢ |
{ =h c -F {-:

These can be simplified by remarking that 7
Sri-ﬁc'”'l'&”"'nﬁ"*‘l'ﬂ"- '

md_inth:crulu':-ﬂmof (9.3) the contributions of n and 7 are cancelled by

munsofrgw subtractions.
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Two pentagrids are called shift-equivalent if they can be obtained from each

other by a parallel shift. The pentagrids determined by ¥o, ..., y4and 7§, .-, ¥4s
respectively (both with zero sum) are equivalent if and only if there exists zpe C

(9.4) Re(zol N +yi—v/ el (i=0,...,4)

We form {, q from yo,.:.,ya bY (9.1), and similarly &%, g* from g, ....74-
' Now shift equivalence can be seen Lo depend on £ and {* only:

|
i
\ with

! : ~ THEOREM 9.1. Thetwo pentagrids are shift-equivalent if and only ifE—E*eP
il (this P is the ideal defined at the end of Section 1).

C | . FRrOOF. (i) If (9.4) holds, we put m;ch{zuC"f}+ ¥i—¥;. Then mje L,
il ( T, m;j=0, whence ¥ mj{¥eP. And Tm{¥=i-{"
HE ; - (i) If §—¢*eP we have &-&*=Lm{¥ with T m;j=0. Hence the vector

bi .j ' (yq—ya—mu,....p—r:—m] is orthogonal to (1,1, 1,11), (Retatale®

| ] (1,0-3L4C-5(""), whence it is a linear combination of (1,4,¢%¢% (") and

i Ll (LEie ' £=3,{~*). This leads to (9.4).

f I| T ' It is sometimes attractive to pass from the complex parameter { to two real
|

I

parameters u and v, related to § by

(9.5 &=(1-u+l =
The condition & —£* € P becomes

ey

l (9.6) u-u*eld, v-—v'eld

where J is the set of all reals of the form m +n(l+{" ) withmeZ nel.
Mote that

9.7)  (Fo,.e,ya)=(u+v40,0,¥)

|
‘! ¥ !
LT . gives one of the y-vectors that lead to & by (9.1).
f
I
}

{ As to AR-patterns associated with pentagrids, we have to restrict ourselves,
) _ at least for the time being, to regular cases.

‘ < THEOREM 9.2. If the pentagrids determined by (& ) and (£*, 7*) are regular,
P they produce the same AR-patiern if and only if £=¢*. Their AR-patterns are
IELE shift-equivalent if and only if {—{*€P.
' i1t pPROOF. If £—&*e P we have, by the second part of the proof of Theorem 9.1,
| y;-y,-‘—m;=R:{m-’,“f} for some ZpeC. A shift by o in the z-plane has no
i | influence at all on the AR-pattern, the m;'s shift the AR-pattern by an element
: of P (see the end of Section 5). So if £—¢&*eP the AR-patterns are shift-
' equivalent, if {=&* they are equal. .
If (&) and (£*%7%) produce the same AR-pattern, we have E=£* For if
F#&*wewould get a contradiction by Theorem 8.1, taking k; € Z such that

|

% (Lki. Lhi{¥V -0 eV, (Lkj, Lhi{¥ =L eV,

5 since the numbers T k;(¥ lie dense in C, even with prescribed T kj.
1
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Next assume the AR-patterns to be shift-equivalent. Since all vertices are in
Z[(], the shift vector (i.c. the vector that has to be added to the points of the
(& n)-pattern in order to get the ({*, *)-pattern) has the form ni{f with nje Z.
Since for both AR-patterns the index Lk; is always in the set {1,2,3,4}, and
since each of these four possibilities occurs at least once (this is trivial from
(8.3)), we have T nj=0 (mod 5). Hence | nilf= T m;{4, with Tm;=0. Soif we
take y* =y — m;(whence {**={*€ P), the (£**, n**)-pattern coincides with the
(£, n)-pattern, By what we proved before, we have {={**, and 50 { —f*eP.

10. TRANSFORMATIONS _

Here we shall systematically consider some transformations of the parameter
vectors (Yo, ...,y4) (always with zero sum), and their effect on {, u, v (the
parameters of Section 9) as well as on the point sets G and U. Here G stands for
the pentagrid, considered as a point set in the complex plane, and
(10.1) U={L;Ki(2){’|zeC}

where K;(z) is given by (4.4). In the case that the pentagrid is regular, U is the
set of rhombus vertices of the corresponding AR-pattern.
We use the obvious notations for transformed sets in the complex plane:

G- zo stands for {z—z0|ze G}, G={2|z€G}, etc.
(i) Taking any zoe C we pass from the vector y to the vector y* by
¥, =vi+Re(zo{™) (=0,...,4).
Mow £*=¢ u*=u, v*=v, G*=G—z0, U*=U."
(ii) Taking integers Ao, ..., s with Ag+ --- + n4=0 we define y* by
Y =w+n (i=0,....4). _
Now &*=¢+LIm{¥ w'=u—(m+m)+m((+{Y), v'=v-(m+m)+
+r({+0Y, G*=G, U*=U+ T m{’.
(iii) If we pass from y to y* by y/=ys-; (=0, ...,4) we get *=f ut=v,
vi=u, G*=G, U*=0. '
(iv) If we take 7 =—y; (=0,...,4) then {*=—§, u*=—u, v*=-v, G*=-G,
Us=-U. i
(v) The cyclic transform yg=y1, ¥§ =¥2, 1 =73, ¥ =74, ¥i =yois connected
with rotation: f*={~2, G*={"'G, U*={"'U. The formulas for u and v are
slightly less convenient: u*=v, v*=—u+({3+{})w

11. SINGULAR PENTAGRIDS

The question whether a pentagrid, defined by reals yq, ..., ¥4 with yo+ -+
+ y4=0, is singular, can be answered by means of the complex parameter £ of
(9.1). '

THEOREM 11.1. A pentagrid is singular if and only if its parameter { has one
of the forms

(11.1) iju+a, u+a, i{u+a, iPu+a, fu+a
with ue R, ae P (for P see Section 1).
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PROOF. Assume the pentagrid to be singular, so somewhere it has three lines
through a single point. If there arc more than three lines through that point, we
just select three of them. The directions are taken from {i,if, if2 ig?, i } and
hence one of the three lines is a line of symmetry for the pair formed by the
other two. By shift and rotation (cases (i) and (v) of Section 10) the point
becomes 0 and the line of symmetry the imaginary axis. This means that yo, yi,
ys are integers or that yo, 2, ¥3 are integers (or both). Applying transformation
(ii) of Section 10 we get (0 yo=yr=y3=0, ya=—=y1 Or t0 yg=y;=ys=0,
¥1=—7y1. In both cases £ is purely imaginary. Using what we know about the
behavior of £ under the transformations, we find that, for some je {0,...,4},
&[4 is congruent mod Ptoa purely imaginary number.

The if-part of the theorem can be proved in the same way.

The cases where £€ P are exceptionally singular in the sense that there is a
point that lies on 5 lines. By a shift we get to the grid given by yo=--- = y4=0.

If £ has simultancously two of the forms (11.1), e, if E=iunl/+a=
=iul*+ @z, with u,uweR, a,aeP, 0<sj<k=4, then we have the

- exceptionally singular case {€P. We can show this by proving that if

Py e e i 7] 88 S ey S EEN T T T ——— T

i(ali- b{*)eP, aeR, beR then ial/e P, ib{* € P. We shall treat a typical case:
j=0, k=1. We have i(a— b{)= L n;{/. Taking complex conjugates, we get two
linear equations for ¢ and b, so @ and b can be expressed in terms of the a's.
Using Lnj=0, ome finds ia=m({—{")+(no+m)*=0%), ib=m({-{")+
+ (m +nd(2-{%), and these values belong to P.

_ If in a pentagrid three lines pass through a point then one of the lines, namely
the one that bisects the angle between the other two, contains infinitely many
points of threefold intersection, and no twofold intersection points. Let is call it
a singular line of the grid. We can study this by transforming to one of the cases
yo=y1=y4=0, yo=y2=y3=0. The singular line has become the imaginary axis,
and it is a line of symmetry for the whole pentagrid. In the exceptionally
singular case there are five such lines with points of threefold intersection, and
these five lines pass through a single point with 10-fold symmetry. Apart from
shifts there is only one such pentagrid, namely the one given by §=0.

12. AR-PATTERNS ASSOCIATED WITH SINGULAR PENTAGRIDS

We consider a singular pentagrid with parameters " ™, with zero sum.
We want to know what happens to the singular line if the parameters are varied
a little. That is, we consider a perturbed grid with parameters yo,.... ¥4, also
with zero sum. :

Let us use the term j-line for all lines of the form Re(z{ ~/) =constant. Let us
assume that the imaginary axis is a 0-line of the unperturbed grid and that some
1-line and some 4-line of that grid intersect on this O-line. It follows that this 0-
line is an axis of symmetry and that the other lines of the grid are arranged in
pairs which intersect each other on that axis. These pairs consist either of al-
line and a 4-line or of a 2-line and a 3-line. '

Without loss of generality we assume y0=y{?+ y@ =y +y{"=0.

56




——

Consider a pair of a 1-line and a 4-line intersecting on the singular line. In the
perturbed situation, the intersection can be shown to lie on the left of the
perturbed O-line if yo+ (y1+ ya)((2+{’) is negative, and on the right if that
expression is positive. For an intersection of a two-line and a 3-line we get the
same answer, but now with yo+ (y2+ 73)0({ + {*). The two expressions have the
same sign, however, since

(C+ 0o+ i+ )+ 0N+ (4 ) vo+ (ra+ y{+ LN =0.

Moreover, that sign is the same as the sign of the real part of { (see (9.1)), since
{cl. (9.2)).

Re &=(1=HT+ Do+ i+ ya)(2+ ).

We conclude that if the perturbation moves £ to the left (note that Re {@=0),
then we get the situation depicted in figure 10: the intersections of 1-lines and 4-
lines and the intersections of 2-lines and 3-lines, which were lying on the 0-line,
all appear on the left of that line in the perturbed situation. Similarly we get the
situation shown in figure 11 if £ moves to the right. Hence, we can consider the
singular pentagrid as the limit of a sequence of regular pentagrid in two ways,
and the corresponding AR-patterns have two different limits.

/

Fig. 10. £ approaching from the left. Fig. 11. ¢ approaching from the right.

In Section 5 we defined the rhombus patterns of regular pentagrids, but in a
singular pentagrid we can still associate a point T K;(z){¥ (with K; defined by
(4.4)) to each mesh, and we can connect these points T Kj(z){/ in a way corres-
ponding to the edges of the meshes. Only, we do not get just rhombuses, but
also hexagons (corresponding to threefold intersections), and possibly a regular
decagon (corresponding to the fivefold intersection in the exceptionally singular
case).

For the time being we shall consider pentagrids which are singular but not
exceptionally singular,

There are two kinds of hexagons, which we shall call D-hexagons and Q-
hexagons, respectively. In the case that the singular line is a 0-line, the D-
hexagons are obtained from intersections with 1-lines and 4-lines, the
(Q-hexagons from intersections with 2-lines and 3-lines. If we modify the
pentagrids by moving £ to the left (figure 10) the D-hexagons and Q-hexagons
are filled as in figure 12, if we move £ to the right (figure 11) we get the pictures
of figure 13. (The names D and Q are chosen according to the type of the point
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inside, which can be a deuce or a queen.) This way we see how the rhombus-
hexagon pattern (belonging to the singular pentagrid) can be filled in two ways
to form an AR-pattern. One of them is obtained by taking the limit of the AR-
pattern of the perturbed pentagrid with £ tending to its limit from the left. The
other one is obtained if § approaches from the right.

 Tho

Fig. 12. Hexagons corresponding to Mgure 10,

Fig. 13. Hexagons corresponding to figure 11.

The two AR-patterns produced by our singular pentagrid (with vertical
singular line) are mirror twins. In the middle they have an infinite vertical chain
of D's and Q's, either all as in figure 12, or all as in figure 13. In Section 17 we
shall discuss the question of what the sequence of D’s and Q’s can be.

Apart from the chain of D's and Q's, the AR-patterns are symmetric with
respect to the vertical line.

For the exceptionally singular pentagrid (£ =0, say) the above discussion is
not entirely valid. The figures formed by small variations of the five lines
through the fivefold point are not of the type suggested in figures 10 and 11.
What happens is determined by which one of the 10 angles formed by the lines
Re(z{ =) =0 contains £. This means that there are 10 different ways to approach
& =0, and these 10 are obtained from each other by rotation. A typical case of
the situation around the point z=0 in a perturbed pentagrid is given in figure
14, and figure 15 shows the decagon filling corresponding to it. From figure 14
it can be derived what happens with the threefold points on the singular lines.
E.g., since the 1-line and the 4-line intersect on the left of the 0-line, we have the
situation of figure 10 for all threefold points along that 0-line. This is also clear
from the rhombus pattern. On each side of the decagon of figure 14 there grows
an infinite chain of D- and Q-hexagons, and whether these are filled according
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to figure 12 or to figure 13 depends on the direction of the arrow on the side of
the decagon.
E 0

B : Fig. 14. Five lines which almost pass through a point.

Altogether, to the exceptionally singular pentagrid there correspond 10
different AR-patterns. All these are congruent. Each one has just one axis of T
symmetry (orthogonal to one of the grid lines).

. Ifwmmmﬁ-mmmkhummanumofD'stndQ’:

; turn into sequences of what were called in [2] long and short bow ties. It is not
hardtaprmthmhﬂmoﬂmgbﬁwmmmmﬁuﬂ's. whence the
sequence can be broken up into pieces (4D, 0, D) and (1D, 4D). These pieces
correspond to long and short bow ties, respectively. g ;

- The essentially unique kite-and-dart pattern belonging to the exceptionally
singular pentagrids was described in [2) and called the cartwheel, . ’

13. SYMMETRIES OF PENTAGRIDS

Here we shall investigate symmetries of pentagrids irrespective of whether
they are regular or not. Symmetries of regular pentagrids carry over at once to
the corresponding AR-patterns (and therefore to the kite-and-dart patterns).

™
p—— _ —— "

Fig. 15.  The rhombus patiern corresponding 1o the skeleton shown in figure 14,




For singular pentagrids, however, the constructions of Section 12 may distort
the symmetry. ’

The symmetries we have to consider are (with the notation of Section 10) of
the kind where some rotation turns G into something that is either shift-
equivalent to G or to G. That means cither (cf. Theorem 9.1)

(13.1) &-(-W¥%eP
with h=0or1,j=0,1,23, 4 (h=j=0 excluded) or
(13.2) . &E-(-)¥eP

with A=0 or 1, j=0, 1, 2, 3, 4. From every class of mutually congruent
pentagrids it will suffice to indicate just one element.

We first consider (13.1) with j#0. In Z[{] the factor 1- (—=1)*¥ divides
1 —{% and therefore 1={, so (13.1) implies (1 - {)¢ € P. Since P consists of all
(1-0)8 with 8eZ[{], we infer (I - {)(&=8)=0 for some 8, whence {eZ[{].
Every element of Z[{] is congruent to 0, %1, +2 mod P. The cases with 1 and
—1 produce congruent pentagrids (passage from G to —G), and sodo 2 and —2.
So we only have to consider { =0, | and 2. We know that { =0 is the
exceptionally singular case (Section 12), but £=1 and £ =2 are regular. Passing
from AR-patterns to kite and darts, &=1 and {=2 correspond to the **infinite
star’* pattern and the “‘infinite sun™ pattern (see [2]), respectively.

The case of (13.1) with h=1, j=0, i.e., the relation 26 P, gives §=1% Tl
with njeZ, ¥ nj=0. Hence zero or two or four of the nj are odd. If all n; are
even then £€ P, i.e., the pentagrid is congruent 10 the one with £=0. If four
of the m; are odd, nmy,...,Rs, say, We write (g, ... , 1a) =2(rm0, e g ITa) +
+(4,-1,-1,-1,-1), and we get £=5/2. By rotation we get the five cases
£=5(i/2. The vectors with my, ny odd, no, 7y, Ae EVEm, give £'s with
&=4{1= 1} (mod P), since tno, $m, Hnz=1), Hm+ 1), 4714 have zero sum. The
cases with my, ms odd, ng, n2, A3 even, produce f=H{-{ 4y (mod P). The
further cases are reduced to these by rotation.

The three values 5/2, 4{2—14{2, ${—4(* give essentially different cases. All
three are singular, since {2-{* and {—{* are purely imaginary, and 5/2 is
congruent to the sum of the two others.

We now turn to (13.2), and we first remark that § =& (mod P) if and only if
FeP+R(f&-&= Y n;{/ with nje Z, Lnj=0, we easily derive mp=0, m =14,
ny=—ny, whence &+m(l1={) +m(l1-{Y)eR). Similarly, we have &=-{
(mod P) if and only if {e P+ iR (if £+ &=L/ withnjel, T nj=0, we derive
1y = R4, My=n3, ng=—2n—2n, whence E+mi(l =)+ nal (Y eiR).

If (13.2) holds, we put &i=¢{~/ and we get £1=(-1)"&. It follows that
£1€i"R+ P, whence {€i"{/R+P. _

The cases with £eil/R+ P are all singular (Section 11). The cases with
£ € {JR + P are not necessarily singular. We investigate the cases with {eR+FP
(the others are obtained by rotation). Assume that such a £ is singular, so also
Zeil/lR+P. If j=1,23,4 this leads to &€ P only. This can be shown by
calculation, but also geometrically: if there are two non-parallel axes of
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symmetry then there is a point of ten-fold symmetry. We finally consider
£eiR + P. Since also FeR+P, we have {=m+pr1=idz+p with a,,a:€ R,
P, p2€ P. We deduce ay=Im(p1 - pz). Therefore { has module P the form
dm({ -+ n((*-¢ %), whence 2{=0 (mod P). The only essentially different
cases are 0, H{ - {*), H{?-{’) and these were all mentioned before.

Summarizing, we have the following essentially different cases of symmetry:

£=0, &=1, £=2, &=5/2, {=H*-0)

E=HL-(Y, feR, (eiR,
apart from the fact that the latter two can be equivalent to one of the others in
exceptional cases.

14. DEFLATION AND INFLATION

A decisive point in the construction of kite-and-dart patterns is the operation
of deflation and its inverse, inflation. By an ingenious subdivision rule for the
separate kites and darts, a kite-and-dart pattern is turned into a new one, where
the pieces have a smaller size, =%+ $V/3 times the original one. It is called the
deflation of the old one. The construction can already be applied to a finite set
of kites and darts that covers just a part of the plane. Conversely, if we have a
tiling of the entire plane with kites and darts, it can be shown to be the deflation
of a uniquely defined kite-and-dart pattern with bigger pieces, §+ $V5 times the
size of the old one. That pattern is called the inflation of the old one. We do not
present details (which can be found in [2]) since deflation and inflation have
their equivalents for AR-patterns, and it is for those that we shall give a full
description. In figure 16 we depict the thick rhombus and its deflation. In figure
17 we show the same thing for the thin rhombus. It is quite easy to check that
the AR-pattern turns into a new one with smaller pieces. 3

[ 0N

Fig. 16. Deflation of the thick rhombus.

/ » ": W

Fig. 17. Deflation of the thin rhombus.

It is interesting to note what happens to the types (cf. figure 7) of the vertices.
Let us call the original pattern ¢, and the deflated pattern (with smaller pieces)
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. Every J of ¢ becomes a K in w. We denote this fact by J, — k. Similarly we
have Dy~Q,, K,—54,, Qs—53y. 53¢—Sy, 54485, 55,-5,, 5,~55,.
Mo vertex of ¢ turns into a J,,, but a J, stems from a point in the interior of a
thick rhombus. And D,'s arise from points on red arrows of ¢. Actually every
thick rhombus produces one J,, and every red arrow one D,,.

It is now easy to describe the inflation ¥ of an AR-pattern ¢. Just omit all
Jy's and D,'s; the remaining vertices are the vertices of x. We connect two
vertices of x if their distance is }+ V5 times the edge-length in @. If such a
connection passes through a D, it is coloured red, otherwise green. We can now
orient the arrows such as to get the proper orientation in the thick and thin
rhombuses.

Thus far we studied general AR-patterns in this section, but we now turn our
attention to patterns generated by pentagrids. If ¢ is the AR-pattern generated
by a regular pentagrid with parameters yy, ..., ¥4, then its inflation x admits a
very simple description. We form Jy, ..., ds by

(14.1)  di=yjs1+yi-1 (i=0,...,4)

(where ys=yo, ¥-1=y4). Note the converse yj=d;-1+ dj+ Jj+1. And note what

happens to the parameter £: '
Ligi{¥=-pL;n¥

where p=—(2+ {3 =}+}5 (see (1.1)).

We claim that the inflation y of ¢ satisfies y =pgs, if ¢s is the AR-pattern
generated by the pentagrid with parameters Jy, ..., d4, and pgg is the pattern
obtained from the points and lines of ¢s by multiplication with p (in the sense of
multiplication in the complex plane).

A nice way to establish this result is provided by the pentagons of Section 8.
Let ¥ be the set (8.2). We define an injection H: V— V by

H(hz)=(hmod 5, —2/p) (he{1,2,3,4},zeC),

where 3k mod 5 stands for the e {1, 2, 3,4} with &= 3k (mod 5). From the fact
that the types of the vertices can be derived from figures 8 and 9 it follows that
¥\ H(V) is just the set of J's and D’s on levels 1 and 4.

As a further preparation we define the set W by

(14.2) W={(ko,...,.k)eZ’|1 = T k;=<4}
and the bijection @ : W— W by @®(k) =m, with
mi=kj-1+ki+kjsi—c (j=0,...,4)

where k_y=4ky, ks=ko, and c=0, 1, |, 2accordingto Tki=1,2, 3, 4. If ke W
we have indeed me W, and [ m;j=3[ k;j (mod 5). The inverse mapping is given
by kj=mj_1+mj—d, whered=0, 0, 1, 1 according to Tm;=1, 2, 3, 4. We note
that if m=@(k) then

(14.3)  Limil{f=pLki{l.
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We now get back to the AR-patterns. If ke W we have by Theorem 8.1 that
L k;{/ is a vertex of ¢, if and only if f(y, k) € V, where
S k)=(L k. L (ki — y){¥).
And T k;{/ is a vertex of ¢4 if and only if (4, k) e V.
It is easy to check that for all ke W
| (14.4)  f(y, (k) = HU(4,K)).
; Il we delete from ¢, the J's and D's, the remaining vertices are the Lkl
| with ke W, f(y,k) e H(V). Replacing k by m and then m by @(k), we get (by
’ (14.3)) the p ¥ k;{/ with ke W, f(y, ®(k)) € H(V). The latter condition is equi-
valent to f(4, k) € V. So if we delete the J's and D's from ¢ we get ¢, and that
is what was claimed.
: REMARK. We mention how the J-pentagrid can be obtained from the y-penta- (-

grid. Take any intersection of a (j+ 1)-line and a (j— 1)-line in the y-pentagrid,
and draw a j-line through the point we get if that intersection point is multiplied
by p~'. It easily follows from (4.1) that this is a j-line of the d-pentagrid, and
that all j-lines of that grid are obtained in this way.

kT 15. ALL AR-PATTERNS ARE PRODUCED BY PENTAGRIDS

[ We shall use the results about inflation and deflation for showing that every
AR*-pattern is produced by a regular or a singular pentagrid, in the sense of
Sections 5 and 12. We use the term AR*-pattern for AR-patterns (with side
length 1, as always) whose vertices all have the form T ki’ with ke W (see
(14.2)). According to what we proved about the index in Section 6, every AR-
, pattern can be turned into an AR®-pattern by rotation and shift, and then the
' index turns out to be equal to T k;. And we know (Sections 5 and 12) that the
. . patterns generated by regular or singular pentagrids are AR*-patterns.

l If ¢ is an AR-pattern then its deflation has the form p~'¢!", where
L p=4+4V5, and ¢V is again an AR*-pattern. This is casily derived by means of
P the following remarks: (i) we can establish b}r means of what we know about the (
| index and its relation to the position of the red'and green arrows, that the new
points introduced in figures 16 and 17 (inside the thick rhombus and on the red
arrows) are again in W, and (ii) we have pW¥' = W, i

Similarly, the inflation of ¢ has the form pg(-", wh:r: @'~ is again an
G ; AR*-pattern.

We define ¢™@, 9™, ... by ¢*+V = (a0 and szmlla.rly o=, p(=3, by
1 pl=n+ D = (gl i,

Consider two AR*-patterns ¢ and y. Assume rhat they have a vertex 2 in
common, and that the set of neighbors of zgin ¢ is the same as in w. Denote by
K the union of the closed interiors of the rhombuses of ¢ and w that meet in zo.
It is easy to check that the deflations of ¢ and w coincide at least inside X, and
E the same thing holds for the deflations of the deflations, etc. Therefore ¢ and
; w' coincide inside p"K, for n=1,2, ....
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It is now easy to show that for any R>0 and for-any AR*-pattern ¢ there
exists an AR*-pattern which is generated by a regular pentagrid, such that ¢
and w coincide in the region given by |z|<R. Take n e N such that p” sin 36 >
= 2R and consider @'~ In ¢'~" the point 0 belongs to a closed rhombus. Let
zo be the vertex of that rhombus that is closest o 0 and again let K denote the
union of the closed rhombuses meeting at Zo. The distance of 0 to the boundary
of K, is at least § sin 36°.

We can find a regular pentagrid that generates an AR*-pattern x that
coincides with ¢!~ as far as 2o and its neighbors are concerned. (This can be
established by taking an arbitrary regular pentagrid, and verifying that all types
of figure 7 occur at least once in its AR-pattern.) Therefore the n-th deflation of
¢'™ and x coincide in a circle with center 0 and radius { sin 36°. According to
Section 14, the n-th deflation has the form g~ my, where y is also generated by a
regular pentagrid. S0 ¢ and w coincide inside the region given by |z|<

< 4p” sin 36° and therefore in |z]<R. )

Mow start from some AR*-patiern @. Let gy, w2,... be AR*-patterns arising
from regular pentagrids and such that w. coincide with ¢ for all points in the
circle with center 0 and radius n. '

Let Yony «--y Yan bE the parameters of the pentagrid producing w.. Takea fixed
vertex L k¢! of @, with ke W. For n sufficiently large it is a vertex of Wa, 5O
2, € C exists such that [Re(zal ™)) + Vi | =Ki- Replacing ¥ja by Re(zal /) + Vin
we get the same AR*-pattern (cf. Section 10(i)), and so we may assume that we
had |yial<|kji+1 from the start. It follows that there is a subsequence
(Fou, --- s 741) (Y02, --- o Ya2hs s converging to some (Yo, --- ys). Obviously ¥ has
zero sum too.

If y produces a regular AR-pattern then it is easy to check that it coincides
with ¢. If it produces a singular AR-pattern its pentagrid is the limit of a
sequence of regular pentagrids, and we get one of the singular patterns corres-
ponding to the singular pentagrid (cf. Section 12).

16. QUASI-PERIODICITY OF AR-PATTERNS

Two of the most amazing things about kite-and-dart patterns are (see 2n: (i
none of these patterns is periodic, and (ii) if we have two patterns, then any
portion of the first one can be found in the second one, just applying a parallel
shift.

These things are quite easy 1o understand since we know that all AR-patterns
are produced by pentagrids. Let us usc as pentagrid parameters the & and 5 of
Section 9. The n has no influence at all on the AR-patterns. According to the
index properties (L k; being 1, 2, 3 or 4, see Section 6) the only possible periods
can be T m{ with Aje Z, Lnj=0. By Section 10(ii) this means that we want to
have L ni{¥#0, L n;j{/ =0, and that is impossible.

If ¢ and ¢z are AR-patterns with parameters &, §2, then & can be approxi-
mated with arbitrary precision by qumbers congruent to & mod P (since P is I
dense in C). From this we can derive the statement On finite portions of ¢1
which are repeated in ¢2. Needless to say, the singular cases require some extra

attention.




17. RELATION OF PENROSE PATTERNS TO SEQUENCES OF ZEROS AND ONES
GENERATED BY SPECIAL REWRITING RULES

In a previous paper [1] we dealt with a kind of sequences which form a
paradigm for the Penrose tilings. We took a doubly infinite sequence of zeros
and ones (i.e., a mapping of Z into {0,1}). Its “*deflation’ is obtained by
replacing each 0 by 10 and each 1 by 100. Not every sequence is the deflation of
another one, but there exist sequences 5 which have inflations (in [1] the term
“‘predecessor'’ was used) of all orders, by which we mean the following. The
sequence 5 is the deflation of a sequence s'", this 5" is the deflation of 59, etc.
In [1] Sections 8 and 9 it was shown that such sequences can be characterized by
means of a procedure that in a two-dimensional square lattice mimics the things
we have described in Section 7 of the present paper for a five-dimensional cubic
lattice, with a similar rdle of deflation. The Penrose—Conway construction of
arbitrary patterns by application of a sequence of shifts and deflations, starting
with a single piece, has its direct analog in those sequences. Even the distinction
between regular and singular cases occurs in the paradigm.

One thing is missing in the paradigm. The Penrose patterns are forced upon
us by means of the rules for fitting the pieces together, but this does not seem to
have an analog in the case of the sequences.

In [1] the rewriting rule 1—100, 0—10, was a special case of a class of
rewriting rules. The simplest case is 1—10, 0—1, and this is related to the
golden section. The sequences with inflations of all orders with respect to the
rule 1—+10, 0—1 are actually present in our singular AR-patterns. Consider the
singular pentagrids with an infinite chain of D’s and @"s as in Section 12. For
convenience we write the D's and Q's from left to right instead of from bottom
to top. We cut the D's into a left part Dy and a right part Dg. (**Lzft"" and
“‘right” refer to the figures we get if figures 12 and 13 are rotated over %0° to
the right.) Similarly each Q splits into Q¢ and Q. Now we study deflation.
Deflation of a D gives DrQD;, and deflation of a Q gives DgDr. A doubly
infinite sequence of Q's and D's deflates into a doubly infinite sequence of
DaQD.'s and DzDy's. In this sequence each DgQD. and each DrDy is
preceded by a D;. So if for each DgQD; and each DgDy we take away the Dy
on the right and add it on the left we still have the same doubly infinite
sequence. So instead of DgQD; we have DQ, and instead of DgDy we have D,
Hence the deflation of the AR-pattern causes in the central chain of D's and
R’s just the same thing as the rewriting rule D—DQ, Q- D (this corresponds to
D=1, 0=0). The D-Q-sequences occurring in singular pentagrids have
inflations of all orders, and indeed, every D-Q-sequence with this property
occurs in some singular AR-pattern. This is easily verified by selecting the
pentagrid parameters so as to check with the algebraic formula of [1] for those
Sequences. -
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